Education of Embedded Systems
Programming in C and Assembly

Based on ARM’s Cortex-M
Microprocessors

Yifeng Zhu, Libby Professor

University of Maine

Webinar Series
October 2018

Role of Embedded Systems: Lays foundation

= Laying foundation in curriculum:
= Computer organization & architecture
= Operating systems
= Software design & algorithms

= Senior project design

= Body of Knowledge (IEEE/ACM Computer Engineering Curricula
2016)
= Number systems and data encoding
= Instruction set architecture
= Relevant tools, standards and/or engineering constraints
= Input/output interfacing and communication

= Interrupts, timers, waveform generation

= Implementation strategies for complex embedded systems
= Computing platforms for embedded systems

Textbook

Embedded Systems
with ARM Cortex-M
Microcontrollers in
Assembly Language and C

Third Edition

Dr. Yifeng Zhu

738 pages, $69.50
Ealli=ogetc ol N Assembly Language Programming

A NEEE TSI in Computer Hardware Embedded Systems

e e wul [
REBLC PN LGN

See a program running

Data representation

ARM instruction set architecture
Arithmetic and logic

Load and store

Branch and conditional execution
Structured programming
Subroutines

64-bit data processing

Mixing C and assembly

Interrupt

Fixed-point & floating-point arithmetic
Instruction encoding and decoding
General-purpose I/O
General-purpose timers

Stepper motor control
Liquid-crystal display (LCD)
Real-time clock (RTC)

Direct memory access (DMA)

. Analog-to-digital converter (ADC)

Digital-to-analog converter (DAC)

. Serial communication protocols

Multitasking
Digital signal processing

Complete instructor's resource:

= Lecture slides, quizzes and exams, tutorials,
lab handouts and solutions (pre-lab, in-lab,
and post-lab), solutions to end-of-chapter
exercises

Bare-metal programming at the register

level without using any API libraries

Line-by-line translation from C to ARM
assembly

Strike the balance between theoretical
foundations and technical practices

Using flowcharts as a reading guide for
processor datasheets

Online YouTube tutorials (received over
866,000 minutes of watch time)

Adopted by over 80 universities

Adopted by universities in US & Canada

B | CRY &2 5 e R Ry

£ . ‘-l:.“"n'bq, :'
QULERI0 % QUEBEC . Y A

= - —

= | 'NORTH
MDNTANA U AKONA

\ m:qo ke

. souTt '- . fyecoe) 7 . L.M}tuﬁ
. DAKGTHA | .,) NOVA SCOTIA

NEBRASI{A !
Umted States

@LORADO g il

ISSURI' hd

DKLAHGMA LY

" ARIZONA | : [o BLLLL NSAS
San Blego NEW MEXICG i \I N ISSII p|

My approach of teaching

v A~ W N -

Using modern platforms and tools
Bare-metal programming

Structured programming in Assembly
Lab-centered learning

Online tutorials

My approach of teaching

v A~ W N -

Using modern platforms and tools
Bare-metal programming

Structured programming in Assembly
Lab-centered learning

Online tutorials

Cheap and engaging platform and tools

Teeer t
eeae

T
e

Friendly & robust IDE

SR TSR TE TV AERT T RA RN T

i
H [] 5]
I T S S Sy we—
e
55 A &l - der @ - it B %
= = <3 RM0351
4s . . | SR Y I e Reference manual
= = STM32L4x6 advanced ARM™-based 32-bit MCUs
Bid el =
Introduction
This arges " infermatien an
Fram 2 s he STMIZL 408 microconsaller memory an pergherals.
=2 famiy of ackages and
perphesals.
For crsenng rtormatan,
corespanding swasnects
For dormation on e ARM® Cartex® 4t e, pese el the Corex®. A4 Techncal
- Reterence
Related documents
+ Comex®M4 avalabie from:
T e R . + STMAZ.&760and ST sbbex datasheet
1 + Contex®. 144 progyamening macual (PLAI214)
.
K pVision*5
el ey ey s
dnamgm e ia
bl ko gt
ey et o
R e
arbia i Rmana
mom S 1 el e oy Brea s x
. =
i s aban
B T g gy) [P A S ——— = ey 2015 Docnn24saT Rev 1 ey
. (i, [P p— S e
B mma L B . P T . b el el BB ol L B8
"
n Samny femn s e * I Farvw -
.'--||ﬂl i, J
o o i
- : . ' B [

free
free

Lab in a box, $25

Selecting a Platform: Hardware Component

Low cost
= ~$25 each

Hands-on experiences

= develop and test real systems

STM32L476G
ARM Cortex-M4F

Rewarding and engaging

= immediately enjoy the fruit of labor

Convenient

= mobile lab without time and location constrains

PC14/0SC32_IN
PC15/0SC32_OUT
VsSS

VDD
PHO/OSC_IN

PH1/0SC_OUT LQFP100
N

Versatile
= pins are extended for easy access

STM32L4 Discovery Kit @STMicroelectronics

Low cost

= ~$25 each

Hands-on experiences

= develop and test real systems
Rewarding and engaging

= immediately enjoy the fruit of labor
Convenient

= mobile lab without time and location constrains

Versatile

= pins are extended for easy access

Integrated ST-Link/V2
programming and
debugging tool

STM32L4 Discovery Kit @STMicroelectronics

Selecting a Platform: Hardware Component

.......

Low cost
= ~$25 each

Hands-on experiences

9-axis motion sensor
(underneath LCD)

= develop and test real systems

Rewarding and engaging

= immediately enjoy the fruit of labor

= Convenient
= mobile lab without time and location constrains
= Versatile LEDs

Reset
Audio Codec

= pins are extended for easy access Joystick

Flash
Audio Connector

10 STM32L4 Discovery Kit @STMicroelectronics

) /4

life.augmented
DISCO-L476VG

3

G

D iy

[
BOOTO
L D SPILSCK j
= D ;
B 2 . D
PA_O p SerialdTX i
> - £ FDAC }—m—
]
D ¥ s ¥ -
5
- H: 12c1 scL Wserial1Tx 7ot e, USER BUTTON ——{=Pi1 NSS H: :
g > 12¢1 SDA HSerial1RX : ' : : : ——{spi1 sck H '
PD QO PI1 MISOH P
PI1 MOSI :
)
[)

Image from mbed.com

Selecting a Platform: Software Component

= Keil uVision Development Tools Debug

-
k2 C:\Users\zhu\Google Maine EDUNDropbox\ECE2714Kits\STM32L4_Documents\Labs\Lab_01_LED\STM32L476G_LED_Assembly\project.uvproj - ysion =
File Edit Wiew Project Flash Debug Peripherals Tools SVCS Window Help
REFLE T [P onon == e Haelale o o @[F) 2
: §1 | Target1 EBEIN AR BN
Py 1 B] mains |] startup_stm32M76:s v x
< . - ——
=% Project: project 77 INCLUDE core cm¢ constants.s : Load Constant Definitions -
B ‘Id i Targetl Ta INCLUDE =stm321476xx constants.s
UI =5 Source Group 1 T8
lj . 80 LREZ main, CODE, READCNLY
main.s 81 EXPORT _ main ; make _main wisible te linker
] startup_stm32M76ecs g2 ENTEY .
] stm32476:0_constants.s 83 Wision A u
’ CMSIS 84 _ main FROC
85
86 ; Enable the clock to GFIO Port B A EVALUATION MODE
[87 LDR xd, =RCC BASE i1 R . L . ..
- i k unning with Code Size Limit: 32K
(] 88 LDR rl1l, [xD, #RCC_AHBEENR] _— g
B k M t 89 CRR ri1, rl, #RCC_}-'!HB2ENR_GPIOBEN
rea POIn s a0 5TR x1, [xO, #RCC_AHBZENR]
91
92 ; MODE: 00: Input mode, 0l1: General purpose output mode
93 H 10: Alternate function mode, 11: Analog mode (reset state)
94 LDR r0, =GPICB BASE
a5 LDR xrl, [xO, #G-PIO_HODER]
96 ECR rl, rl, #(0x03<<(2%2)) H
- CRR o o1 t(ieen) But this has not been a problem.
a8 5TR x1, [xO, #GPIO_HODER]
93
4| | | 100 LDR r1, [z0, #GPIO_ODR] o
=] Project| €% Books | {¥ Func.., Oy Temp..| | ¢ | m | k
»
Build Output 1 B
A
] 3
5T-Link Debugger

Selecting a Platform: Software Component

= Keil uVision Development Tools

.
A C\Users\zhu\Google Maine EDU\Dropbox\ECE2714Kits\STM32L4_Documentsilabsilab_01_LED\STM32L476G_LED_Assembly\project.uvprojx - Bision

DR #|[@ e oo &|[E) &

[&]

Value

A -

aa oA

[Bits 31..0] RW (@ 0:48000414) GPIO port cutput data register

00000003
00000000
00000000
00000000
00000000
00000000

00000004
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

v
File Edit View Project Flash Debu Tools sVCH Window Help
BEFT IR 1 11| @ 1504 om0 porT
EROS‘-T|@|?}J{_}‘1{@*{}|E>| Core Peripherals "E'E'E'E'lw'
Registers 1 [@ Disassembly 0 B crios
Regiter [Vaiue [<]|[lox08000234 6141 STR i, [T0 ~
EEv 105: stop B stop .
T 0x08000236 ETFE B 0x0800 roperty
AT 0x08000238 0000 DCH 0x0000 MODER
0x08000234 2000 DCH 0x2000
(00000000
520000610 0x0800023C 1000 DCH 0x1000 OREER
0x0800023E 4002 DCW 0x4002 OSPEEDR
m L dabdalalabe F-YalNar-Yalal TVl Nwndann] pUpDR
(00000000 4
00000000 IDR
00000000 |] mains ||] startup_stm32M476ics ¥ X} 5.0DR
00000000 102 ORR rl, rl, #(1<<2} - ODR15
(00000000 103 STR rl, [z0, #GPIO_ODR] ODR14
(00000000 104
(00000000 HD 105 =top B stop ODR13
00000000 106 QDR12
‘R13(SF) (20000610 = g — ODRIL
------- RI4(LR) OxFFFFFFFF o DRI
""" R15(PC) 08000236 109 ALIGH
{be61 000000 110 ODR
111 LRER myData, DATA, READWR|
.| 112 ALIGH
S oberml 113 arraw DCD 1. 7. 3. 4 It
] Project | 5 Registers < [om 3 GPIOB | RCC
Command 2B Memoryl
a
#%# Restricted Version with 32768 Byte Code Size Limit Md“"”'“‘mﬂm
*#% Currently used: 596 Bytes (1%) 0x20000000: 00000001 00000002
_) 0%20000014: 00000000 00000000
55 \\project\main.s\105 0x20000028: 00000000 00000000
B5 \\prejectimain.s\28 ~ |0x2000003C: 00000000 00000000
< L] | 4 0x20000050: 00000000 00000000
3 0x20000064: 00000000 00000000
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet | éECaHSHCk—LaﬁH Memory 1

5T-Link Debugger

1: 0.00020000

Monitor or modify
peripheral registers

Students found this very helpful!

Free version limited the
code size to 32 KB. But this
has not been a problem.

STM32Cube

% 5TM32CubeMix Untitled™ STM3IZLATEVGTx
File Project Clock Configuration Window Help

'@ulldﬁ.@).gf'-"\"\"'\q «cO®: 7P

Pinout Clock Configuration ' Configuration Power Consumption Caloulator

KT 300RCE FTOX
HSE HSE_RTC
e L - 32 To LCD (KHz)
Input frequency
LSE
i 2 L — —» 32 ToRTC(KHz)
LSIRC
32 KHz vy
Enable CS5 (I
- 32 To IWDG (KHz) g
System Clock Mux i
MSI 3 Nice clock tree
- . ..
HST O SYSCLK (MHz) P HELK (MH2) , visualization
HSE 80 | 1 80 -
*——»
PLL Source Mux LLCLK @ 80 MHz max
MSI
—= 0
HSIRC - e L~ *
[@ /2 Enable C35
Input frequency 16 MHz HSE PLLO e e ien
CLK48 Clock Mux
8 Eli HSE L a0
PLLSAILQ
PLLP — To Us
4-48 MHz | — 48 o
22.857143
PLLQ
e > 48 To RN
PLLSAIIR 12C1 Clock Mux
MSI
48 — PCLK1
PLLSAIIQ — >
- e |

My approach of teaching

Bare-metal programming
Structured programming in Assembly
Lab-centered learning

v A~ W N -

Online tutorials

Teach at which level?

= Visual wizard tools (such as STMCubeMX)
« HAL (Hardware Abstraction Layer) libraries
= Bare-metal

Applications

CubeMX

HAL Bare-metal: Bypass HAL
and possibly CMSIS-Core

CMSIS-Core

Hardware

HAL Level

= Pros
; Initialize the Red LED pin (PB.2) = Simplify implementation
static GPIO InitTypeDef GPIO InitStruct; - Better portability
GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
GPIO InitStruct.Pull = GPIO PULLUP; B » Many examples
GPIO InitStruct.Speed = GPIO SPEED FREQ VERY HIGH;
GPIO InitStruct.Pin = GPIO PIN 2; . Cons
HAL GPIO Init(GPIOB, &GPIO InitStruct); = Very complex to understand

= Cannot meet students’ curiosity

HAL GPIO TogglePin (LED4 GPIO PORT, LED4 PIN);

vold HAL GPIO Init(GPIO TypeDef *GPIOx, GPIO InitTypeDef *GPIO Init) {
uint32 t position = 0x00;
uint32 t i1ocurrent = 0x00;
uint32 t temp = 0x00;

|30
lines

Bare-Metal Level in C

#define LED PIN 2

// GPIO Mode: Input (00), Output(01), AlterFunc(10), Analog(ll, reset)
GPIOB->MODER &= ~ (3<<(2*LED_ PIN)) ; // Clear by using mask
GPIOB->MODER |= 1<<(2*LED_PIN); // Set as Output

// GPIO Speed: Low speed (00), Medium speed (01), Fast speed (10), High speed (11)
GPIOB->OSPEEDR &= ~ (3<<(2*LED PIN)); // Clear by using mask
GPIOB->OSPEEDR |= 2<<(2*LED_PIN); // Fast speed

// GPIO Output Type: Output push-pull (0, reset), Output open drain (1)
GPIOB->OTYPER &= ~ (1<<LED PIN); // Push-pull

// GPIO Push-Pull: No pull-up pull-down (00), Pull-up (01), Pull-down (10),
Reserved (11)
GPIOB->PUPDR &= ~ (3<<(2*LED PIN)); // No pull-up, no pull-down

// Toggle up the LED * Only 6 lines of code
GPIOB->ODR ~= 1 << LED PIN; . . : .
- * Focus on directly interfacing with hardware.
* Do not use any libraries!

Bare-Metal Level in Assembly

Bare-metal level programming helps learning assembly programming
Set Pin B.2 as GPIO output

#define LED PIN 2

// GPIO Mode: Input(00), Output (01), AlterFunc(10), Analog(ll, reset)
GPIOB->MODER &= ~ (3<< (Z*LED_PIN)) ;
GPIOB->MODER |= 1<<(2*LED PIN); // Output (01)

C implementation

l Translate naturally

LED PIN EQU 2
LDR r0O, =GPIOB BASE
LDR rl, [r0, #GPIO MODER]
EOR rl, rl, #(0x03<<(2*LED PIN))
ORR rl, rl, #(1<<LED PIN)
STR rl, [r0, #GPIO MODER]

Assembly implementation

My approach of teaching

Bare-metal programming
Structured programming in Assembly
Lab-centered learning

v A~ W N -

Online tutorials

A Structured Approach in Assembly Programming

= Assembly is not a structured programming language
= No high-level control constructs to avoid GOTOs (unconditional branches)
= Difficulty to learn and program
= Prone to create spaghetti codes

= My approaches
= Using flowcharts
= Leveraging C programs

A Structured Approach in Assembly Programming

Methods of teaching structured programming in

assembly
= Using flowcharts
= Separate program structuring from code writing YES NO
THEN e ELSE
b=3 b=4

"

ENDIF

A Structured Approach in Assembly Programming

Methods of teaching structured programming in iazation:
assembly right = size - 1

No

= Using flowcharts

= Separate program structuring from code writing

left < right

| middle = (left + r|ght)/2

array[middle] == target
Yes
array[middle] < target

left = middle + 1 right = middle - 1
v v
| Target found | Target not found

STOP

Flowchart of Binary Search

A Structured Approach in Assembly Programming

Enable Peripheral Clocks via RCC Registers
1. Enable the clock of GPIO port B

Methods of teaching structured programming in

(PB.6 blue LED = TIM4 CH1, PB.7 green LED = TIM4 CH2)

assembly y

Configure GPIO Pins (PB.6 for blue LED and PB.7 for green LED)
1. Configure the pin as alternative function mode (GPIO_MODER)
2. Set the alternative function as timer (GPIO_AFRL/GPIO_AFRH)

[| U Si n g ﬂ OWC h a_ rts 3. Set the pin as push-pull mode with no pull-up pull-down (GPIO_PUPDR)

v
- Se Pa- rate P rogram structu ri ng fro m COd e Writi ng Configure Timer 4 Channel 1 as PWM Output for dimming blue LED

. Set the prescaler value (TIM4_PSC)

. Set the auto-reload value (TIM4_ARR) to 200

. Set PWM mode 1 or mode 2 on channel 1 for blue LED (TIM4_CCMR1)
. Enable output preload for channel 1 (TIM4_CCMR1)

. Enable auto-reload preload for channel 1 (TIM4_CR1)

. Enable output for channel 1 (TIM4_CCER)

. Set output compare register for channel 1 (TIM4_CCR1) to 1

. Enable the counter of channel 1 (TIM4_CR1)

v

Brightness = 1;
Direction = 1;

O~NO GO WN =

»|

YES

Brightness < 200

NO NO

P
Bl

Brightness > 0

A
| Direction = 0 — Direction |

| Brightness = Brightness + Direction |

v

| TIM4_CCR1 = Brightness |

v

| Time Delay |

Diming LED by using timer PWM output

Using flowcharts in al

Write down your last name, and complete the following table.

START

LCD Clock Initialization

1. Disable RTC clock protection (RTC and LCD share the same clock). Write
OxCA and @x53 to RTC_WRP register to unlock the write protection

2. Enable LSI clock (RCC_CSR)

3. Select LS| as LCD clock source (RCC_CSR RTCSEL field)

4. Enable LCD/RTC clock (RCC_CSR RTCEN field)

Configure LCD GPIO Pin as Alternative Functions

1. Enable the clock of GPIO port A, B, and C

2. Configure Port APin 1, 2, 3, 8,9, 10, and 15 as AF 11 (0x@B)

3. Configure Port B Pin 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, and 15 as AF 11 (0x@B)
4. Configure Port CPin 0, 1,2,3,6,7,8,9, 10, and 11 as AF 11 (0x@B)

LCD Configuration

1. Configure BIAS[1:0] bits of LCD_CR and set the bias to 1/3

2. Configure DUTY([2:0] bits of LCD_CR and set the duty to 1/4

3. Configure CC[2:0] bits of LCD_FCR and set the contrast to max value 111

4. Configure PONJ[2:0] bits of LCD_FCR and set the pulse on period
to 111, i.e., 7/ck_ps. A short pulse consumes less power but might not
provide satisfactory contrast.

. Enable the mux segment of the LCD_CR

. Select internal voltage as LCD voltage source

. Wait until FCRSF flag of LCD_SR is set

. Enable the LCD by setting LCDEN bit of LCD_CR

. Wait until the LCD is enabled by checking the ENS bit of LCD_SR

0. Wait until the LCD booster is ready by checking the RDY bit of LCD_SR

= © 0 ~NO WU,

Is the LCD_RAM protected?
(If the UDR bit LCD_SR is set,
then RAM is protected.)

Set up the value of LCD_RAM[0], LCD_RAM[2], LCD_RAM[4], LCD_RAM[6] |

v

Set the UDR flag of LCD_SR register to request update display |

1 2 3 4 5 6 :
H BAR3
(% — M T r, S — Bk —— Py e 2 & § 1
rl:,{l—lk]'—‘ [I.':'ru'l"l.:] }r—][r\" "|L [‘IU _l‘ {-]tw [—1[F}]’JU ‘ : G_ COLON BAR2
A x AL a & % A X :ij[i;; = X}
AN RN RGN RIGNRIGN — Y .
R ¥ OX oW Yok FOX R 4 ' D BARe
Your Last Name: (First Six Characters)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4E | 4G | 3M | 3B 6G | 5M | 5B 1M | 1B 6E 3E | 3G |2M | 2B 6B | 6M 2E | 2G | 1E | 1G
LCD_RAM[0]
LCD_RAM[1] ;%88& &% m &8& ;8%8& SE | 56 | 4M | 48
Rt RIS
4p | 4F | 3¢ | 3A 6F | 5c | 5a J1c | 1A 6D 30| 3F | 2¢|2a 6A | 6C 20| 2F | 1D | 1F
LCD_RAM[2]
LCD_RAM[3] igggg ;8888: %88& ggggj Eggg 5D | SF | 4C | 4A
RS ettt
e RAMLE ap 4@ | 2 | 3k 6a |2 | sk] | 6P P (sa| 2 |2« oK | ol 2 | 2a |17 | 1a
LCD_RAM[5] gggg %% %égggi ;888% gggg 5P | 5Q | G | 4
R S i e
- aN | an |] oH [o | 5 | op | M 6N SN | 3H | A | 2 o | o | 24 | N | 1K
LED_RAM[7] %% gg%gg éﬁ&; %&;gg %g& 5N | 5H D"P 4

Is the update done?
(If the UDD bit LCD_SR is set,
then update is done.)

NO

A Structured Approach in Assembly Programming

Methods of teaching structured programming in VES ‘o
assembly
THEN ELSE
= Using flowcharts b=3 b=4
= Separate program structuring from code writing T
= Leveraging C programs ENDIF

= Relate an unstructured to a structured
= C vs. Assembly line-by-line comparison

; rl = a, r2 = b

if (a == 1) CMP rl, #1
b=3 BNE else
else then MOV r2, #3
b =4; B endif

else MOV r2, #4
endif

A Structured Approach in Assembly Programming

Methods of teaching structured programming in C calling assembly functions

assemb|)' int main(void) { Zggg o o

= Using flowcharts (1,2,3,4);

= Separate program structuring from code writing

BX LR
ENDP

= Leveraging C programs Assembly calling C functions
= Relate an unstructured to a structured int (...) {
= C vs. Assembly line-by-line comparison return a+brc+d;

}

= Mixing C and assembly
Inline assembly

int sum(...) {

Extra benefits: Assembly helps to some difficult C concepts

= Structure padding

struct Position {
char x;
char y;
char x;
int time;
short scale;
} array[10];

address of array[@].time = array + offset

When assembly access a variable in a C structure, the
address offset has to take padding into consideration

address + 23
address + 22
address + 21
address + 20
address + 19
address + 18
address + 17
address + 16
address + 15
address + 14
address + 13
address + 12
address + 11
address + 10
address + 9
address + 8
address + 7
address + 6
address + 5
address + 4
address + 3
address + 2
address + 1

address

8 bits

ox00 addin]
0x00 padding

_’X

_’X

scale

time

padding

_’y

_’X

7

0x00 adding |
1

0x00 padding

scale

time

padding

_’y

_»X

~ array[1]

\. array[0]

Extra benefits: Assembly helps to some difficult C concepts

» static variables

int foo(); AREA myData, DATA
ALIGN
// Reserve space for x
X DCD 5

AREA static_demo, CODE
EXPORT __main

ALIGN
ENTRY
int main(void) { __main PROC
int y; BL foo ; r@ =6
y = foo(); // y =6 BL foo ; r@ =7
y = foo(); // y =7 BL foo ; ro =8
y = foo(); // y =38 stop B stop
while(1); ENDP
¥
int foo() { foo PROC
; Lload address of x
// local static variable LDR rl1, =x
// x is initialized only ; Lload value of x
once LDR ro, [ri1]
static int x = 5; ADD ro, ro, #1
; save value of x
STR ro, [ri]
X =X+ 1;
return(x) BX 1r
} ENDP

END

Extra benefits: Assembly helps to some difficult C concepts

= yvolatile variables

Main Program (main.c) Interrupt Service Routine (isr.s)

volatile unsigned int counter; AREA ISR, CODE, READONLY
extern void task(); IMPORT counter
extern void SysTick Init(); ENTRY
int main(void) { SysTick _Handler PROC
counter = 10; EXPORT SysTick Handler
SysTick Init(); LDR rl, =counter
while(counter != 0); // Delay LDR ro, [ril1] ; load counter
// continue the task SUB ro, ro, #1 ; counter--
e STR ro, [ri1] ; save counter
while(1); BX LR ; exit
} ENDP
END

My approach of teaching

|
2. Bare-metal programming
3.

4. Lab-centered learning

5

Online tutorials

Lab modules

Covering both fundamental and advanced topics

= Higher level courses
= Lower level courses

I. Push button and light up LEDs _ External Interrupts

2. UART (Bluetooth hc-05,

2. LCD display driver ESP8266)

3. Interfacing with keypad 3. 12C (temperature sensor,

4. Stepper motor control OLED display)

5. SysTick Polling, 4. SPI (gyro, accelerometer, o

6. RTC merePt nRF24L01) ~" <

7. PWM (diming LED, servo motors) 5. RGB LED strip (WS2812) ﬂ—-\

8. Timer input capture (Ultra sonic Ry 6. ADC /‘:..D \: })
distance sensor) T 7. CODEC and Mic e

9. ADC (potentiometer, infrared s CRC

distance sensing)

transmi tter

10. DAC (music synthesizing) "*,,_“

receiver Obstacle

Example Lab: Digital Inputs

PE PE PE PE PA PA PA PA
10 11 12 13 1 2 3 5 +3V

2.2KQ

—
R1 1 2 3 A

PE 10
R2 4 5 6 B

Output Port PE 1

(Outputs from from <
the processor)

R3 7 8 9 C

PE 12

R1R2 R3 R4 C1C2 C3 C4

R4 * 0 # D

LPE 13

C1 C2 C3 C4

LPA1 PA 2 PA3 PA 5 J

~
Input Port

(Inputs to the
Processor)

Example Lab: Digital Outputs

DL Nases 28BYJ-48
/ BI)
“pB2 INT| g [A N1 [_>]OUT1 o [Ble <
T IN 2 B IN2 [| q OUT 2 Red Af Stepper
_ L : gl L2] — Motor
X IN 3 A IN3 1 OUT3 A S
j__>’ LN—" | Yellow G
— L_r_r_r
IN 4 B IN4 [H OUT 4 _E
[MEEE L_>°'T—>|—.J | Iy
Orange —
IN5 OUT 5 N—"T—"T— 4
[_>’ T_N_. :I _% Red B B
IN6 []OUT6) g N Pink
| >° t ! ._r_r_l 6 I
IN7 [_>]ouw
IN8 [_]OUTS
[GND GND [|] SleLL NI NI NI N
D (c_|B [A
‘ +5V I }'__/‘ }__;'
o ‘ L J [
GND | vcc

Example Lab: Timer PWM output

Angular Rotation
~Tms -90°

3
3

el

20 ms (50 Hz)

Example Lab:
Ultrasonic Distance Measurement

OXFFF Timer 1
counts down
0

H_J
Period = 1ps x 2" = 0.65s

Edge detector triggers logging
the CNT value into CCR1.

¢, O

— Trigger

Echo

GND(:::>

0.65s
| ARR = Trigger || ||
CCR2=10
N
Timer1 | il N PWM ! PE11 i€
Channel 2 | Output > 10ps
| 1MHz Logic | vV
I PSC=15 |—3» CNT | ad
HSI e — — — — — — — — —_——_ =
16MHz === == ——————— :
ARR =
OXFFFF N N CCR1 :
Timer 4 | A Trigger | Edge ||
Channel 1 | < Detector (i
1MHz PB.6
'Y pPsc=15 |—{ CNT |
| ——
___________________ J J—

Proportional to distance
—

Echo

Example Lab: ADC

1. Turn on HSI (RCC_CR_HSION)
2. Wait for it is ready (RCC_CR_HSIRDY).

Infrared ¢
transmitter

Configure GPIO PB.6 as output with push-pull for blue LED

» -
v
B

Configure GPIO PC.0 as Analog Input

Note: PC.0 is connected the ADC Channel 10 (PC.0 = ADC_IN10)
I 1. Enable the clock of GPIO C

Partition 2. Set PC.0 as Analog Input (GPIO_MODER)

Analog to Digital Converter 1 (ADC1) Setup

Infrared Note: HSI (16MHz) is always used for ADC on STM32L.
. 1. Turn on the ADC clock (RCC_APB2ENR_ADC1EN)
recelver Obstacle 2. Turn off the ADC conversion (ADC1->CR2)

3. Set the length of the regular channel sequence to 1 since we only perform ADC in Channel 10.
(L[4:0] bits of register ADC1->SQR1)
4. Set Channel 10 as the 1% conversion in regular sequence
(SQ1[4:0] bits of register ADC1->SQR5)
5. Configure the sample time register for channel 10 (SMP10[2:0] bits of register ADC1->SMPR2)
6. Enable End-Of-Conversion interrupt (EOCIE bit of register ADC1->CR1)
7. Enable continuous conversion mode (CONT bit of register ADC1->CR2)
8. Configure delay selection as delayed until the converted data have been read
(DELS[2:0] bits in register ADC1->CR2)
2.2KQ 9. Enable the interrupt of ADC1_IRQn in NVIC
10. Configure the interrupt priority of ADC1_IRQn
11. Turn on the ADC conversion (ADON bit of register ADC1->CR2)
ADC12 IN6 Note: Make sure that we should write to CR2 register before the next step since SWSTART
- cannot be updated if ADC is off.
12. Start the conversion of the regular channel (ADC_CR2_SWSTART)
Emitter Note: If SWSTART only performs one conversion, then it is very likely that your code did not
set up the delay correctly in step 8.

100Q

Collector
Anode

V= X

Cathode

Dead Loop

I

Lab Components

o Points |[Requirements Poor | Fair | Good
Pre-Lab * Check at the beginning Completion of Pre-lab Assignments 0 1 2

Assignment (IO%) of the lab session Poor: absent from lab or does not complete pre-lab assignment
N Graded on completion, Fair: t_:omplete pre-lab asmg_nment but.lacks spme deta‘_H;
Good: complete pre-lab assignment with details and minimal 90% correct answers
not correctness
Documentation & Maintainability Poor | Fair | Good
Proper indentations, whitespaces, and blank lines, ample and non-redundant comments 0 0.5 1
In-lab Assign ment - Completion of readme txt write-up (status, description of something cool, feedbacks) 0 0.5 1
Header description (author, program objectives, pin usage, clock frequency) 0 0.5 1
L Frequent and cormrect commits with comments in Gitlab 0 0.5 1
* Graded at beginning of Program uses constant symbols defined whenever possible 0 05| 1
- next lab session Total
* Graded based on E— :
 Documentation
No compilation errors or wamings (except warning L6314W) 0 0.5 1
Post-lab e Correctness Exhibits all required functionality 0 1 2
Assignment (5%) = o Something cool (6%) Concise code (Codes that are unnecessary should be deleted) 0 0.5 1
Efficient and robust code 0 0.5 1
Total
Lab Time and Demonstration Poor | Fair | Good
Make good use of lab time (Poor: leave before lab is done; Fair: accomplish a few objectives;
) . 0 0.5 1
Good: completes all objectives)
Demo as specified by the lab assignment 0 1 2
Answer TA's questions clearly and demonstrate thorough understanding 0 0.5 1
Complete post-lab assignments 0 0.5 1
Total
Poor | Fair [Good
Note: Flashing LED is NOT considered as something cool except Lab 1. 0 1.5 3

Number of late days|

Hands-on Lab #l

Light up an LED in 100% assembly

PB2

PES

LD R

LD G

LD4
LD R R;ja ’M}'
y |
0
IK 1% 0402 Fn
LD5
R46
DEEW |2

3301%040%]3]')

, green

|

Pre-Lab Assignment

Enable the clock of GPIO Port A (for joy stick), Port B (for Red LED) and Port E (for Green LED)

Register |&|8|Q|Q|Q|Q|QQRYS|S(KRS|2|S 12|22 |2|T |2 |2|@|e||~|o|w|t|o|~|—|o
z HARARRAE
Z Pz Z|Ww
AHB2ENR % (L})J 8& EQEEEEEE
Z| |w ol o|g|Q|e|o|o|g|Q
4 < <| kK= ojlo|a|a|a|a|a |
o olo|o|o|o|lo|o|O
Mask
Value
a. Configure PB 2 as Output
GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default)
Register |5 |2 QRS QK |IKRQ TR IR [T [Z2F 12 [Q|F |8 |of|~@ v [t |||
el glleg|elz|aglle|leg|le|elleg|egle| e
MODER | & | L | S |G| & |& |y ||y | g|y | D)y |Q|D|d
] [m)] (m)] o]
e o) e @) e) o) (@) O ©)] (@) @] @) O ©] (@) o]
s s s = s s = = = = = = = = = =
Mask
Value
b. Configure PB 2 Output Type as Push-Pull
Push-Pull (0, reset), Open-Drain (1)
Register |&| 3| X K| QQJ(QQSIK SIS 2AI|2 =122 el Y]~ | e
OTYPER e EEEERENEEEERRER
S5l lolollololo|ofolo|o|o
Mask Reserved
Value

My approach of teaching

i A W M -

Using modern platforms and tools
Bare-metal programming

Structured programming in Assembly
Lab-centered learning

Online tutorials

YouTube Lectures & Tutorials

= Tutorials .

I. Create a project in Keil v5

Short Lectures

Why do we use Two's Complement?

2. Debugging in Keil v5 2. Carry and Borrow Flag
3. Clock configuration of STM32L4 processors 3. Overflow Flag
4. Printing messages via UART through ST-Link V2.1 4. Pointer
5. How to fix common errors? 5. Memory Mapped I/O
6. GPIO Output: Lighting up a LED
7. GPIO Input: Interfacing a joystick
Watch time (minutes) Views Subscribers Your estimated revenue

856.9K 278.1K +6.0K $0.00

Dec 14, 2016 Mar 19, 2017 Jun 22,2017

Timer: PWM output

Interrupt Enable and Interrupt Priority
Interrupts

External Interrupts (EXTI)

System Timer (SysTick)

Booting process

LCD

Race Conditions

Updated Oct 1, 2018, 3:00 AM

Jul 6, 2018

One open challenge:
How to get more female students!?

= Out of 60K subscribers

Gender

Watch time - Lifetime

Female 71% .

Summary

I. Using modern platforms and tools
Bare-metal programming

Structured programming in Assembly
Lab-centered learning

A

Online tutorials

For more information

= Send email to Yifeng.Zhu@maine.edu for

= An exam copy of my book

= Complete instructor resources: slides, exams, quizzes, solutions, lab handouts & solutions

= My book website: http://web.eece.maine.edu/~zhu/book/
= Sample labs, lab kit, FAQ

« My YouTube Channel:
https://www.youtube.com/channel/lUCY0sQ9hpSRéyZobt | qOv6DA

Thank STMicroelectronics for organizing this workshop!

mailto:Yifeng.Zhu@maine.edu
http://web.eece.maine.edu/~zhu/book/
https://www.youtube.com/channel/UCY0sQ9hpSR6yZobt1qOv6DA

