Lab 3: Interfacing Keypad Instructor: Prof. Yifeng Zhu Spring 2016

Goals

- 1. Understand I/O matrix technique
- 2. Be familiar with keypad scanning algorithms
- 3. Understand software debouncing

Pre-lab Assignment

- 1. Read Textbook Chapter 14.7 Keypad Scan
- 2. Complete the register tables listed in the pre-lab

In-lab Assignment

- 1. Use polling method to scan keypad and display the inputs on LCD
 - a. When a key is pressed, its value is then displayed on the LCD. The LCD should be able to display up to six digits or letters.
 - b. Software debouncing should be used.
- 2. Something cool. The following gives a few examples.
 - a. When a key is pressed for a long time, two options: either generate one input no matter how long it is pressed, or generate a periodical input with an interval of 2 seconds.
 - b. Use the "*" key to delete the previous input. Pressing "*" key again keeps deleting the previous input.
 - c. Use the "#" key to repeat the previous inputs.
 - d. Detect and recognize if multiple keys are pressed simultaneously.

Keyboard Interface

The 4x4 keypad used in this lab requires 8 pins (four row pins and four column pins). In this lab, the connection between the keypad and the discovery kit is as the following table.

Row	R1 → PE 10	$R2 \rightarrow PE 11$	R3 → PE 12	R4 → PE 13
Column	C1 → PA 1	C2 → PA 2	C3 → PA 3	C4 → PA 5

All pins of the input port (C1, C2, C3, and C4) are pulled up to 3V via a $2.2K\Omega$ resistor. Within the processor, each GPIO pin can be pulled up via an internal resistor (between 20 and 55 $K\Omega$, typically 40 $K\Omega$). However, the internal pull-up capability is too weak and thus an external pull-up is required.

When looking at the front size of the keypad, the pins on the back from left to right are: R1 - R2 - R3 - R4 - C1 - C2 - C3 - C4.

The maximum current a GPIO pin can source or sink is 20 mA. When calculating the value of external pull-up resisters, make sure that the current should not exceed 20 mA.

$$\frac{3V}{2.2K\Omega} = 1.4 \ mA$$

On the STM32L4 board, all pins in the input port (PA1, PA2, PA3, and PA5) are connected to ground via a 100nF capacitor, as shown in the figure below. A very short delay should be added before reading the input port.

Pre-Lab Assignment Lab 3: Interfacing Keypad

Student Name: ₋	
TA:	
Time &	Date:

Configure Port E: Pin 10, 11, 12, and 13 as Digital Output

GPIO Mode: Digital Input (00), Digital Output (01), Alternative Function (10), Analog (11)

Register	31	30	29	27	26	25	24	23	21	20	19	18	17	16	15	12	11	10	6	8	7	9	5	4	3	2	1	0
MODER	MODER15[1:0]	1011	MODER14[1:0]		MODER13[1:0]	MODER12[1:0]		MODER11[1:0]	MODER10[1:0]		MODER9[1:0]		MODER8[1:0]		MODER7[1:0]	MODER6[1:0]	MODEDE[1:0]	MODEN 3[1.0]	MODER4[1:0]	•	MODER3[1:0]	MODEN 3[1.0]	MODER2[1:0]		MODER 1[1:0]	· · · · · · · · · · · · · · · · · · ·	MODER0[1:0]	
MASK																												
VALUE																												

GPIOA Mode Register MASK Value = 0x	(in HEX)
GPIOA Mode Register Value = 0x	(in HEX)

2. Configure Port A: Pin 1, 2, 3, and 5 as Digital Input

GPIO Mode: Digital Input (00), Digital Output (01), Alternative Function (10), Analog (11)

Register	31	30	29	28	27	26	25	24		22	21	20		18	17	16	15	14	13	12	11	10	6	8	2	9	2	4	3	2	1	0
MODER	MODER 15[1:0]	i	MODER14[1:0]	1	MODER13[1:0]		MODER12[1:0]		MODEP11[1:0]	יןיי	MODER10[1:0]	•	MODER9[1:0]	,	MODER8[1:0]		MODER7[1:0]		MODER6[1:0]	٠	MODER5[1:0]	,	MODER4[1:0]	-	MODED3[1:0]		MODER2[1:0]		MODER1[1:0]		MODER0[1:0]	
MASK																																
VALUE																																

GPIOB Mode Register MASK Value = 0x	(ir	n HEX
GPIOB Mode Register Value = 0x	(in HEX)

Lab Demo Lab 3: Interfacing Keypad

- 1. Do all digits (0-9) and letters (A, B, C, and D) show up on the LCD correctly?
- 2. What is your software-debouncing algorithm? How well does it work?
- 3. Explain to TA your keypad scanning algorithm
- 4. We do not use the internal pull-up in this lab. Instead, we pulled the pins up through external resistors. We said the internal pull up is too weak. What does it mean specifically?

Post-Lab Assignment Lab 3: Interfacing Keypad

Write your answer to the post-lab assignment in the file Readme.MD and submit it to gitlab server.

- 1. When multiple keys are pressed, can the scan algorithm correctly detect all keys pressed? (Hint: ghosting, or ghost key)
- 2. What suggestions you would give to improve the experiences of this lab?
- 3. For the textbook, do you find any typos or have any comments or suggestions?